Director Colin JAFFRAY

On-board Hydrogen Generation for PEM Fuel Cells in Automotive Applications

Tokyo, September 1999

Content

- Introduction
- Performance of individual components

Fuel reformer

CO clean-up

Afterburner

- · Performance of integrated system
- · Conclusions and future work

Orchard Road Royston, Herts. SG8 5HE, England

 $Fax: 01763\text{-}253081\\ E\text{-mail: jaffrc@mattey.com}$

Group Overview

- British Company Established in 1817 in London
- World leader in Advanced Materials Technology
- Employing 6,000 People in 38 Countries.
- Operating Profit of £147m on a Turnover of £3.4bn*.
- Sole PGM Marketing Agent for Amplats (formerly Rustenburg Platinum Mines Ltd)

* figures taken from 1999 annual report

Impact of Transportation

Fact USA in 1997*

Energy consumption

• 31% by transportation sector

Emissions due to on-road vehicles

• 57% CO, 30% NOx, and 27% VOC

*Source: EPA @ www.epa.gov/ttn/chief/trends97/browse.html

Fuel Cells.....

......have been identified as the most promising technology that can meet our future needs for transport applications, because they......

- have high efficiency over a wide power range
- produce no harmful emissions (H₂ + B O₂ = H₂O)
- are quiet

Hydrogen

.....is one of the most abundant elements on Earth, and......

- can be produced from (fossil/ renewable) fuels or water
- is a gas and has a very low energy density at ambient pressure and temperature
 (>3000 times less energy per volume than gasoline)

Hydrogen Storage Options

Physical

- Compress (200 600 bar)
 - bulky, difficult refueling, no infrastructure
- Liquefy (20 K, 2 bar)
 - energy intensive, insulation, no infrastructure
- Absorption by metal: -> metal hydride
 - heavy, no infrastructure

Chemical

- Hydrogen generation from Hydrocarbons or alcohols
 - more complex system
 - easy refueling

Fuel Reformer

- Steam Reforming (endothermic)
 - CH₃OH + H₂O -> 3H₂ + CO₂
 CH₄ + 2H₂O -> 4H₂ + CO₂
- Partial Oxidation (exothermic)
 - $Arr CH_3OH + 0.5O_2$ -> $2H_2 + CO_2$ $Arr CH_4 + 0.5O_2$ -> $2H_2 + CO$ $CO + H_2O$ -> $H_2 + CO_2$
- Autothermal Reforming
 - Combination of SR and PO or combustion
- · Undesired side reaction

HotSpot Autothermal Reforming

- Advantages
 - ü relatively small
 - ü fast start-up
 - ü good dynamic response
 - ü good efficiency
 - ü modular design, easy scale-up
- · Can be applied to all types of HC's and alcohols
 - ü development most advanced for methanol and NG

CH₃OH HotSpot Reformer

Standard operation

- 6,000 litres of H₂ per hour
- 58% H₂ (dry product)
- 2.4..2.5 mol H₂ / mol CH₃OH
- Volume ~ 6 litre
- Mass ~ 9.5 kg
- Power ~ 6-7 kWe

Start-up with heated feed section

- start-up 20 s to 75%
- start-up 50 s to 100%

CO clean-up

-Developed a multi-stage system mainly based on preferential oxidation....
- · Tested with various reformate compositions
 - ü system can easily be adapted
 - ü methanol or water vapor has no detrimental effect
 - ü sensitive to sulfur components, but reversible
- Excellent Start-up and Transient Response
 - ü CO breakthrough negligible
 - ü 100% to 50% in seconds
 - $\ddot{u}\,$ CO spikes (2 4 times steady state content).....
 - can be attenuated effectively

Afterburner

....Catalyst system developed for two functions......

- · During normal operation
 - ü Burn any combustible products in anode exhaust
 - ü Make harmful emissions negligible
 - ü Heat HotSpot feed section
- · During start-up
 - ü Combust methanol to contribute to.....
 -fast HotSpot start-up

Johnson Matthey 講演 OHP

20 kW FP start-up tests

.....Performed at ~27% of maximum throughput.....

- 1 start methanol and air flow to afterburner
 - start methanol and air flow to HotSpot reformer under very lean combustion conditions
 - start air flow to CO clean-up system
- 2 start water feed to HotSpot reformer
- 3 turn down air feed to HotSpot reformer to SS value

Conclusions

- Developed and demonstrated FP components suitable for automotive applications
 - ü HotSpot reformer
 - ü CO clean-up
 - ü catalytic afterburner
- Demonstrated the start-up of 20 kWe FP subsystem
 - ü reformate produced in 2 minutes
 - ü no CO breakthrough

Future Work

- Improve fuel processor system
 - ü system size and weight
 - ü engineering
 - è heat exchange, control, dynamic performance, pressure drop, fuel, water and air supply
 - ü reduce cost....reduce cost....reduce cost
- Further develop HotSpot reforming
 - ü LPG, higher hydrocarbons