·次電池の場合

(10)

マイナン イオン

電解質

757

正極

終わる.

電子

負極 (反応/

1次電池 正極や負極を構成している反応物

質が消費されてしまうと電池としての寿命が

使い捨て型. 乾電池, 各種ボタン型電池など

X MUS MNS

 (\land)

マイナン

電解質

+ 電源 -

る充電で回復 蓄電池、バッテリ-

用した充電も.

ブラス イオン

正極 反応/生

RX

乾電池、各種ボタン型電池

燃料電池の中でのSOFCの位置づけ。						
	_		衣工 旅科電池の種類と特徴 見			
	H 44-	イオン交換膜型	燐酸型	溶融炭酸塩型	固体酸化物型	
	1/10/07	(PEMFC/PEFC)	(PAFC)	(MCFC)	(SOFC)	
	電解 質	プロトン置換した イオン交換膜	燐酸(80 – 90 %)- 水 (多孔性シリコンカ ーバイドに含浸)	混合アルカリ炭酸塩融液 (多孔性LiAlO₂セラミックス に含浸)	ジルコニア系などの酸化物 イオン導電性セラミックス	
	電極 材料	白金系触媒/炭素 /PTFE 撥水剤	白金系触媒/炭素/ PTFE 撥水剤	酸素極:リチウム添加酸化ニ ッケル 燃料極:多孔性ニッケル	酸素極:ペロプスカイト型導 電性酸化物など 燃料極:ニッケルジルコニア サーメットなど	
	作動温度	約80 ℃	約 200℃	約 650℃	700 – 1000 °C	
	開発 状況 など	最初の有人宇宙飛 行ジェミニ宇宙船 の電源:近年は自 動車用電源として 現在脚光を浴びて いる	民生用オンサイト発 電機として 1960 年 代後半から開発. 1991 年に 11MWの 発電システム試験実 績.100-200 kWの 市販発電システム試験支 績.100-200 kWの 中期、空数百台稼動意 中.	1970年頃、溶融塩内への酸素 種材料の溶解析出などの問題 が指摘され欧米での開発が中 所、この問題が解決されぬま ま、80年代半ばからわが国で ま 幹 発 電 用に 注目 され 1000kW 級システムの軟作試 酸が10年程度数次にわたり繰 り返されている。	1960 年代から MCFC と同様 に、高温排熱を利用したター ビン発電と組み合わせた高 効率発電システムとして研 のスタック研究が展開中、 100kW 数のオンサイト発電。 1 kW級の家庭用熱併給シ ステムなどが実証運転中、	
	燃料 等の制 約	純水素(CO 濃度を 数十 ppm 以下に) 炭化水素系燃料利 用には精度の高い 改質・精製装置が 必要	CO 濃度が低いこと が望ましい、炭化水 素系燃料には大きな 改質装置が必要	燃料への制約は少ない. 電解 質中をイオンが炭酸イオン (CO ₂ + O ²)が移動するため, CO ₂ 循環システムが必要. 改 質装置も必要.	燃料等への制約なし。	

urer

apouy

X=0.3

bar)

P(0₂)

) Bol

T/K 14731373 1273 1173 1073

0.8 10³ T⁻¹ / K¹

々に生成する可能性

0

single-phase

0.7

multi-phase

0.9

52

